The effect of low number of points in clustering validation via the negentropy increment
نویسندگان
چکیده
We recently introduced the negentropy increment, a validity index for crisp clustering that quantifies the average normality of the clustering partitions using the negentropy. This index can satisfactorily deal with clusters with heterogeneous orientations, scales and densities. One of the main advantages of the index is the simplicity of its calculation, which only requires the computation of the log-determinants of the covariance matrices and the prior probabilities of each cluster. The negentropy increment provides validation results which are in general better than those from other classic cluster validity indices. However, when the number of data points in a partition region is small, the quality in the estimation of the log-determinant of the covariance matrix can be very poor. This affects the proper quantification of the index and therefore the quality of the clustering, so additional requirements such as limitations on the minimum number of points in each region are needed. Although this kind of constraints can provide good results, they need to be adjusted depending on parameters such as the dimension of the data space. In this article we investigate how the estimation of the negentropy increment of a clustering partition is affected by the presence of regions with small number of points. We find that the error in this estimation depends on the number of points in each region, but not on the scale or orientation of their ∗Corresponding author. Tel.: +34 91 497 22 11; fax: +34 91 497 22 35. Email addresses: [email protected] (Luis F. Lago-Fernández), [email protected] (Manuel Sánchez-Montañés), [email protected] (Fernando Corbacho) Preprint submitted to Neurocomputing February 10, 2011 distribution, and show how to correct this error in order to obtain an unbiased estimator of the negentropy increment. We also quantify the amount of uncertainty in the estimation. As we show, both for 2D synthetic problems and multidimensional real benchmark problems, these results can be used to validate clustering partitions with a substantial improvement.
منابع مشابه
Evaluation of Negentropy-based Cluster Validation Techniques in Problems with Increasing Dimensionality
The aim of a crisp cluster validity index is to quantify the quality of a given data partition. It allows to select the best partition out of a set of potential ones, and to determine the number of clusters. Recently, negentropy-based cluster validation has been introduced. This new approach seems to perform better than other state of the art techniques, and its computation is quite simple. How...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملON FUZZY NEIGHBORHOOD BASED CLUSTERING ALGORITHM WITH LOW COMPLEXITY
The main purpose of this paper is to achieve improvement in thespeed of Fuzzy Joint Points (FJP) algorithm. Since FJP approach is a basisfor fuzzy neighborhood based clustering algorithms such as Noise-Robust FJP(NRFJP) and Fuzzy Neighborhood DBSCAN (FN-DBSCAN), improving FJPalgorithm would an important achievement in terms of these FJP-based meth-ods. Although FJP has many advantages such as r...
متن کاملEffect of low frequency stimulation of perforant path on kindling acquisition and synaptic transmission in the dentate gyrus in rats
Introduction: Previous studies have been shown that low frequency stimulation (LFS) has an inhibitory effect on kindling acquisition. However, the mechanism of this effect has not been completely determined. In the present study, the effect of LFS of the perforant path on seizures induced by rapid perforant path kindling was investigated. Methods: Animals were kindled by electrical stimulatio...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011